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Sub-diffusion

Anomalous subdiffusions that describe particles move slower
than Brownian motion (or the original underlying spatial
motion), for example, due to particle sticking and trapping.

A prototype of subdiffusion can be modeled by Brownian
motion time-changed by an inverse stable subordinator.
Continuous time random walk model:

n n
Xn = &, Th=>
k=1 j=1

where & is the kth displacement and #; is the jth waiting or
holding time. Let Ny = max{n: T, < t}. Then Y; = Xy, is the
CTRW.
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Sub-diffusion

Anomalous sub-diffusion is the scaling limit of CTRW when the
inter-arrival times {r;} have power law tail distribution and the
displacements {{x} have zero mean and finite variance.

Let B is Brownian motion in R? and S an 3-stable subordinator.
Define

Ei=sup{r>0:5 <t}=inf{r>0:5 > t}.

Then Bg, provides a model for anomalous sub-diffusion, where
particles spread slower than Brownian particles.
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Time-fractional equation

Let u(t, x) = Ex[f(Bg,)]. Then [Baeumer-Meerschaert, 2001]
[Meerschaert-Scheffler, 2004]

]
u= 58xu with u(0, x) = £(x),

where
t
of(t) = 5 [(at=n)— @) er

is the the classical Caputo fractional derivative 8? of order g.
(A. N. Kochubei).
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]
u= 58xu with u(0, x) = £(x),

where

t
of(t) = 5 [(at=n)— @) er

is the the classical Caputo fractional derivative 8? of order g.
(A. N. Kochubei).

Fractional time equation also arises in many other
circumstances, including heat propagation in material with
thermal memory. B, is called fractional-kinetics process in
some literature.
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General time-fractional equation

If St is a general subordinator with Laplace exponent
d(N) = KX + /000(1 — e M)y(dx),
then u(t, x) = Ex[f(Bg,)] satisfies [C. 2017]
(KOt + 0f )u = %Axu with u(0, x) = f(x),
where

d9t) = g ) (9t=r)=g(0))v(r.oc)dr

= /t(g(t —r)—9g(0))v(dr) if gis Lipschitz.
0
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Stock market

Anomalous sub-diffusions can also be used to model bull and
bear markets for stocks and commodities.

asS; = St(,uidt + UtdBL,)-

Solution:

t t t
St = Sp exp </ osdBy +/ 1S — 1/ agdLs> .
0 0 2 Jo
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Stochastic control of SDEs

Given initial time s, initial state x; and control process u,

dx“(t) = b(t, x“(t), u(t))at + o (t, x“(1), u(t)) B,
fort e [s, T],

t—s—a)t’

x“(s) = xo.
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Stochastic control of SDEs

Given initial time s, initial state x; and control process u,

dx“(t) = b(t, x“(t), u(t))dt + o(t, x"(t), u(t))dB,
fort e [s, T],
x“(s) = xo.

t—s—a)t’

Cost function:

J(s,x,u,a) = [/ f(t, x95204(1), u(t)) dt + h(x"5*3(T))|,
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Stochastic control of SDEs

Given initial time s, initial state x; and control process u,

ax¥(t) = b(t, x"(1), u(t))at + o (t, x"(1), u(t))dBy,

t—s—a)t’
forte[s, T],
x“(s) = xo.
Cost function:
J(s,x0,u,a) = [/ f(t,x"S%08(1), u(t)) dt + h(x*S*:4(T))|,
Optimal control:
J(s, x0,u*,a) = inf _J(s,x0,u,a)=: V(s, X, a).

UEUL[S, T]

(respectively, J(s, Xo, U*, &) = inf 15,11 J(S, X0, U, @)).
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@ The control problem for sub-diffusions is not always
Stochastic. In a sense, the control problem is a hybrid of
deterministic and stochastic.
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@ The control problem for sub-diffusions is not always
Stochastic. In a sense, the control problem is a hybrid of
deterministic and stochastic.

@ When studying the stochastic maximum principle, the
adjoint equation is a backward stochastic differential
equation driven by B;,, which is new.
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@ The control problem for sub-diffusions is not always
Stochastic. In a sense, the control problem is a hybrid of
deterministic and stochastic.

@ When studying the stochastic maximum principle, the
adjoint equation is a backward stochastic differential
equation driven by B;,, which is new.

@ The sub-diffusion is not a Markov process. To investigate
the dynamic programming principles (DPP), the overshoot
process needs to be added to make it Markov. This brings
new challenging in the study of the regularity of the value
function. The Hamilton-Jacobi-Bellman (HJB) equation has
two parts: the interior and the boundary parts.
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Inverse function

Ly= if§r S,>¢]

—_>

.t
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|
|
|
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S[_,w 'z:\/\f)_ 4—\« Wy EWE W,

Gle. K>o o $¢ C-lw :t-Pn;u LC(V) Mmeasure L)‘ Se A S’fl‘:c‘ﬂ.!a
oressiag ond 0 Ly U cortinueus,
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Overshoot process R;

Recall Ly = inf{r: 5, >t} so §;, > t.

Theorem (Zhang-C. 2022+)

Suppose that B is a standard Brownian motion on R? starting
from 0, S is any subordinator that is independent of B with
So=0,and L; :=inf{r >0:S, > t}. Then

X = (X, Ry) = (xo +Biy s Fo+ St g — t) . >0,

t—Rg)t

with )N(o = (X0, Ro) is a time-homegenous Markov process
taking values in RY x [0, co).

Liys — Ls = inf{r>0:S,>I+s}7L,:inf{r>0:S,+L(7SLt>t+sstt}
inf {r>0:800 >s—(SL{—t)}:L(S a2+ ° 01,

where a = SL[ — tis the overshoot.
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Inverse subordinator

Suppose that S; = st + SP with x > 0. Its potential measure U
has a continuous density function J(x) > 0; that is

E /0 £(Sr)at = /[o,oo) F(x)U(dx) = / F(x)9(x)dx.

[0,00)

Moreover,
P(S., = x) = xk9(x) forevery x > 0.

Consequently,

d CUt+s) - U [T e(x)dx
ar b = Jim, s i =)
and E (L]
. t
lim == = 9(0) = 1/.
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Controls

Definition

(1) Foreach 0 < s < T and a > 0, denote by U3[s, T] the set of all

- o) te[s, T]-Progressively measurable processes

{u(t,w);t € [s, T|} defined on [s, T] x Q with

E| sup |u(t)|2} < 00. Here {7} >0 is the minimum augmented
te[s,T]

filtration generated by X = (X, R) with Ry = a.

(2) We say a control u € Uy[s, T] if the filtration { 77} in the above is
replaced by the minimum augmented filtration {F, ;’a} generated by

X, the first coordinate process of X = (X, R). Clearly, F;# C F7 for
every t > 0 and so Uj[s, T] C Ug[s, T].
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Dynamic programing principle

The following is the counter part of Bellman’s principle of
optimality for DPP for sub-diffusions.

Theorem (Zhang-C. 2022+)
Forany0<s<s<T,yeR%anda>0,

V(s,y,a) = eIZr/]{f[s . / f(r,x“SY2(r), u(r))dr
+V(5,x4574(8), Re_4) |

where

R# =Sy, ,. +a-t 1>0.
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Holder regularity for the value function

Theorem (Zhang-C. 2022+)

Under Lipschitz assumption on the coefficients with Lipschitz
coefficient L, there is a constant C = C(T, L, k,v) > 0 so that
forany s,5€[0,T),y,y € R? and a,a € [0, o)

|V(Sv Y, a) - V(§7Y7 5)|
< C(ly—yI+ (1 +yl+IyDls -]

+Hyl+yD(la—alAT)+Is—3+Vl]a—al A T).

v
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Hamilton-Jacobi-Bellman equation

Theorem (Zhang-C. 2022+)
Suppose the value function V(t, x, a) is C'?'-smooth. Then

VS(Sayv a) - Va(tvy) a) + ”?If (b(tv.y? U)V}’(t7y7 a) - f(Sayv U))

=0 fora>0, (interior eqn.)

Va(s.,0) + 1 D5 V(5,5 0) + if (b(t. X, )Vy(¢..0)

+ idz(s,x, U) Vyy(sa%o) - f(S,y, U)> = 07

(when a = 0: boundary eqn.)

L V(T,x, a) = h(x).

where
D'v(x) = / (v(x 4+ z) — v(x))r(dz).
(0,00)
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Martingale representation theorem

The following result holds for any subordinator S.

Theorem (Zhang-C. 2022+)

Foreacha> 0, T € (0,00] and ¢ € L3(F7?), there exists an

{F} }tepo, 1 -predictable process Hs with E fOT H§dL(S,a)+ < 00 SO
that

T
E=E[¢] +/0 HsdB(Ls—a)+- (0.1)

Such H is unique in the sense that if H' is another
{78} te[o, 7] -Predictable process, then

.
IE/ |Hs — Hi[?dL(s_ay+ = 0.
0
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BSDEs driven by sub-diffusions

Theorem (Zhang-C. 2022+)

Under the Lipschitz conditions, forany a> 0, T > 0 and and
¢ € L3(F4%), the BSDE

ayY; = /71(['7 Yt)dt—l- hg(t, Yt,Zt)dl_(t_a)+ T thBL(

t—a)t

with Y7 = £ admits a unique adapted square-integrable solution
(Y,2).

’
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BSDEs driven by sub-diffusions

Theorem (Zhang-C. 2022+)

Under the Lipschitz conditions, forany a> 0, T > 0 and and
¢ € L3(F4%), the BSDE

ayY; = /71(['7 Yt)dt—l- hg(t, Yt,Zt)dl_(t_a)+ T thBL(

t—a)t

with Y7 = £ admits a unique adapted square-integrable solution
(Y,2).

We can then use it to study stochastic maximum principle using
spiking variational method.
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Stochastic maximum principle for spiking variations

Theorem (Zhang-C. 2022+)

Let (u(-),x(:)) be an optimal pair for the control problem with s = 0 in
ujlo, T]. Let (p, q) and (P, Q) be the solutions to the company
BSDEs. Then for every v € U}[0, T] and't € (0, T],

E [5b(t)p(t) — 5(1)]
+57'E {ﬂ{na (=0} <6a( )a(t) + ;(50(0)2;:(0)] <0.

Here §o(t) := o(t,Xx(1), v(t)) — @(t, X(t), u(t)).

ap(t) = —(bx(t, (1), u(t)p(t) — (8, X(1), U(t))) dt — ox(t, X(1), u())q(t)dl;_ 4+
+q(t)dBL(1,a)+ fort € [0, T],
p(T) = —h'(x(T)).
dP(t) = — (2bx(t, X(t), U(t))P(t) + bxx(t, X(t), u(t))p(t) — fux(t, X(1), U(t))) ot
- ((Ux(fa X(1), T(N))2P(1) + 20x(t, X(1), TD)Q(E) + oxx(, X(1), T(t)q ()) dli_ g+
+Q(t)dB,
t—a)t
P(T) = —h'"(X(T).
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Stochastic maximum principle

Recall the cost functional for control u € U[s, T] is

J(5. %, U, a) U F (8, x%5%4(1), u(t)) dt + h(x (T))}
and the optimal control u* is to minimize this cose, that is,
J(s, X0, U", @) = uelilg[fs,T] J(s, X0, U, a).
Theorem (Zhang-C. 2022+)

Under the Lipschitz conditions, suppose that u*(-) is an optimal and
Xx*(-) be the corresponding state process

X“() = b(t, X (1), u"(1))olt + o(t, X (t), u" (1)) By,

t—s—a)t’
then for every t € [0, T), almost surely

bu(t, x*(8), u*()P(t) + £~ au(t, x* (1), u* (1)) q(t) 1 {Ra(t)=0
—fy(t, x* (1), u* (1)) = 0.
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Thank you!

hen-Qing Chen
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