
Stochastic control of SDEs driven by
sub-diffusions

Zhen-Qing Chen

University of Washington

Joint work (ongoing) with Shuaiqi Zhang

17th Workshop on Markov Processes and Related Topics

BNU at Zhuhai , November 27, 2022

Zhen-Qing Chen Stochastic control of SDEs driven by sub-diffusions



Sub-diffusion

Anomalous subdiffusions that describe particles move slower
than Brownian motion (or the original underlying spatial
motion), for example, due to particle sticking and trapping.

A prototype of subdiffusion can be modeled by Brownian
motion time-changed by an inverse stable subordinator.
Continuous time random walk model:

Xn =
n∑

k=1

ξk , Tn =
n∑

j=1

ηj ,

where ξk is the k th displacement and ηj is the j th waiting or
holding time. Let Nt = max{n : Tn ≤ t}. Then Yt = XNt is the
CTRW.
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Sub-diffusion

Anomalous sub-diffusion is the scaling limit of CTRW when the
inter-arrival times {ηj} have power law tail distribution and the
displacements {ξk} have zero mean and finite variance.

Let B is Brownian motion in Rd and S an β-stable subordinator.
Define

Et = sup{r > 0 : Sr ≤ t} = inf{r > 0 : Sr > t}.

Then BEt provides a model for anomalous sub-diffusion, where
particles spread slower than Brownian particles.
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Time-fractional equation

Let u(t , x) = Ex [f (BEt )]. Then [Baeumer-Meerschaert, 2001]
[Meerschaert-Scheffler, 2004]

∂βt u =
1
2

∆xu with u(0, x) = f (x),

where

∂βt g(t) :=
d
dt

∫ t

0
(g(t − r)− g(0))

1
Γ(1− β)

r−βdr

is the the classical Caputo fractional derivative ∂βt of order β.
(A. N. Kochubei).

Fractional time equation also arises in many other
circumstances, including heat propagation in material with
thermal memory. BEt is called fractional-kinetics process in
some literature.
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General time-fractional equation

If St is a general subordinator with Laplace exponent

φ(λ) = κλ+

∫ ∞
0

(1− e−λx )ν(dx),

then u(t , x) = Ex [f (BEt )] satisfies [C. 2017]

(κ∂t + ∂νt )u =
1
2

∆xu with u(0, x) = f (x),

where

∂νt g(t) :=
d
dt

∫ t

0
(g(t − r)− g(0))ν(r ,∞)dr

=

∫ t

0
(g(t − r)− g(0))ν(dr) if g is Lipschitz.
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Stock market

Anomalous sub-diffusions can also be used to model bull and
bear markets for stocks and commodities.

dSt = St (µtdt + σtdBLt ).

Solution:

St = S0 exp

(∫ t

0
σsdBLs +

∫ t

0
µsds − 1

2

∫ t

0
σ2

s dLs

)
.
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Stochastic control of SDEs

Given initial time s, initial state x0 and control process u,
dxu(t) = b(t , xu(t),u(t))dt + σ(t , xu(t),u(t))dBL(t−s−a)+

,

for t ∈ [s,T ],

xu(s) = x0.

Cost function:

J(s, x0,u,a) = E
[ ∫ T

s
f (t , xu,s,x0,a(t),u(t)) dt + h(xu,s,x0,a(T ))

]
,

Optimal control:

J(s, x0,u∗,a) = inf
u∈Ua[s,T ]

J(s, x0,u,a)=: V (s, x0,a).

(respectively, J(s, x0,u∗,a) = infu∈U ′a[s,T ] J(s, x0,u,a)).
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Novelty

The control problem for sub-diffusions is not always
stochastic. In a sense, the control problem is a hybrid of
deterministic and stochastic.

When studying the stochastic maximum principle, the
adjoint equation is a backward stochastic differential
equation driven by BLt , which is new.

The sub-diffusion is not a Markov process. To investigate
the dynamic programming principles (DPP), the overshoot
process needs to be added to make it Markov. This brings
new challenging in the study of the regularity of the value
function. The Hamilton-Jacobi-Bellman (HJB) equation has
two parts: the interior and the boundary parts.
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Inverse function
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Overshoot process Rt

Recall Lt = inf{r : Sr > t} so SLt ≥ t .

Theorem (Zhang-C. 2022+)

Suppose that B is a standard Brownian motion on Rd starting
from 0, S is any subordinator that is independent of B with
S0 = 0, and Lt := inf{r > 0 : Sr > t}. Then

X̃t := (Xt , Rt ) :=
(

x0 + BL(t−R0)
+ , R0 + SL(t−R0)

+ − t
)
, t ≥ 0,

with X̃0 = (x0,R0) is a time-homegenous Markov process
taking values in Rd × [0,∞).

Lt+s − Ls = inf{r > 0 : Sr > t + s} − Lt = inf{r > 0 : Sr+Lt
− SLt

> t + s − SLt
}

= inf
{

r > 0 : Sr ◦ θLt
> s − (SLt

− t)
}

= L(s−a)+ ◦ θLt
,

where a = SLt
− t is the overshoot.
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Inverse subordinator

Suppose that St = κt + S0
t with κ > 0. Its potential measure U

has a continuous density function ϑ(x) > 0; that is

E
∫ ∞

0
f (St )dt =

∫
[0,∞)

f (x)U(dx) =

∫
[0,∞)

f (x)ϑ(x)dx .

Moreover,

P(SLx = x) = κϑ(x) for every x > 0.

Consequently,

d
dt

E [Lt ] = lim
s→0

U(t + s)− U(t)
s

= lim
s→0

∫ t+s
t ϑ(x)dx

s
= ϑ(t)

and
lim
t→0

E [Lt ]

t
= ϑ(0) = 1/κ.
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Controls

Definition

(1) For each 0 ≤ s < T and a ≥ 0, denote by Ua[s,T ] the set of all
{Fa

t−s}t∈[s,T ]-progressively measurable processes
{u(t , ω); t ∈ [s,T ]} defined on [s,T ]× Ω with
E
[

sup
t∈[s,T ]

|u(t)|2
]
<∞. Here {Fa

t }t≥0 is the minimum augmented

filtration generated by X̃ = (X ,R) with R0 = a.

(2) We say a control u ∈ U ′a[s,T ] if the filtration {Fa
t } in the above is

replaced by the minimum augmented filtration {F ′,at } generated by
X , the first coordinate process of X̃ = (X ,R). Clearly, F ′,at ⊂ Fa

t for
every t ≥ 0 and so U ′a[s,T ] ⊂ Ua[s,T ].
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Dynamic programing principle

The following is the counter part of Bellman’s principle of
optimality for DPP for sub-diffusions.

Theorem (Zhang-C. 2022+)

For any 0 ≤ s ≤ s ≤ T , y ∈ Rd and a ≥ 0,

V (s, y ,a) = inf
u(·)∈Ua[s,T ]

E
[ ∫ s

s
f (r , xu,s,y ,a(r),u(r))dr

+V (s, xu,s,y ,a(s),Ra
s−s)

]
,

where
Ra

t := SL(t−a)+
+ a− t , t ≥ 0.
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Hölder regularity for the value function

Theorem (Zhang-C. 2022+)

Under Lipschitz assumption on the coefficients with Lipschitz
coefficient L, there is a constant C = C(T ,L, κ, ν) > 0 so that
for any s, s ∈ [0,T ), y , y ∈ Rd and a,a ∈ [0,∞)

|V (s, y ,a)− V (s, y ,a)|

≤ C
(
|y − y |+ (1 + |y |+ |y |)|s − s|

+(|y |+ |y |)(|a− a| ∧ T ) +
√
|s − s|+

√
|a− a| ∧ T

)
.
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Hamilton-Jacobi-Bellman equation

Theorem (Zhang-C. 2022+)

Suppose the value function V (t , x ,a) is C1,2,1-smooth. Then

Vs(s, y ,a)− Va(t , y ,a) + inf
u

(b(t , y ,u)Vy (t , y ,a)− f (s, y ,u))

= 0 for a > 0, (interior eqn.)

Vs(s, y ,0) +
1
κ

Dν
aV (s, y ,0) + inf

u

(
b(t , x ,u)Vy (t , y ,0)

+
1

2κ
σ2(s, x ,u)Vyy (s, y ,0)− f (s, y ,u)

)
= 0,

(when a = 0: boundary eqn.)
V (T , x ,a) = h(x).

where
Dνv(x) :=

∫
(0,∞)

(v(x + z)− v(x))ν(dz).
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Martingale representation theorem

The following result holds for any subordinator S.

Theorem (Zhang-C. 2022+)

For each a ≥ 0, T ∈ (0,∞] and ξ ∈ L2(F ′,aT ), there exists an
{F ′t }t∈[0,T ]-predictable process Hs with E

∫ T
0 H2

s dL(s−a)+ <∞ so
that

ξ = E[ξ] +

∫ T

0
HsdB(Ls−a)+ . (0.1)

Such H is unique in the sense that if H ′ is another
{F ′,at }t∈[0,T ]-predictable process, then

E
∫ T

0
|Hs − H ′s|2dL(s−a)+ = 0.
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BSDEs driven by sub-diffusions

Theorem (Zhang-C. 2022+)

Under the Lipschitz conditions, for any a ≥ 0 , T > 0 and and
ξ ∈ L2(F ′,aT ), the BSDE

dYt = h1(t ,Yt )dt + h2(t ,Yt ,Zt )dL(t−a)+ + ZtdBL(t−a)+

with YT = ξ admits a unique adapted square-integrable solution
(Y ,Z ).

We can then use it to study stochastic maximum principle using
spiking variational method.
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Stochastic maximum principle for spiking variations

Theorem (Zhang-C. 2022+)

Let (u(·), x(·)) be an optimal pair for the control problem with s = 0 in
U ′a[0,T ]. Let (p,q) and (P,Q) be the solutions to the company
BSDEs. Then for every v ∈ U ′a[0,T ] and t ∈ (0,T ],

E [δb(t)p(t)− δf (t)]

+κ−1E
[
1{Ra(t)=0}

(
δσ(t)q(t) +

1
2

(δσ(t))2P(t)
)]
≤ 0.

Here δϕ(t) := ϕ(t , x(t), v(t))− ϕ(t , x(t),u(t)).


dp(t) = − (bx (t, x(t), u(t))p(t)− fx (t, x(t), u(t))) dt − σx (t, x(t), u(t))q(t)dL(t−a)+

+q(t)dBL
(t−a)+

for t ∈ [0, T ],

p(T ) = −h′(x(T )).
dP(t) = − (2bx (t, x(t), u(t))P(t) + bxx (t, x(t), u(t))p(t)− fxx (t, x(t), u(t))) dt

−
(
(σx (t, x(t), u(t)))2P(t) + 2σx (t, x(t), u(t))Q(t) + σxx (t, x(t), u(t))q(t)

)
dL(t−a)+

+Q(t)dBL
(t−a)+

P(T ) = −h′′(x(T )).

Zhen-Qing Chen Stochastic control of SDEs driven by sub-diffusions



Stochastic maximum principle
Recall the cost functional for control u ∈ U ′a[s,T ] is

J(s, x0,u,a) = E
[ ∫ T

s
f (t , xu,s,x0,a(t),u(t)) dt + h(xu(T ))

]
,

and the optimal control u∗ is to minimize this cose, that is,

J(s, x0,u∗,a) = inf
u∈U ′a[s,T ]

J(s, x0,u,a).

Theorem (Zhang-C. 2022+)

Under the Lipschitz conditions, suppose that u∗(·) is an optimal and
x∗(·) be the corresponding state process

x∗(t) = b(t , x∗(t),u∗(t))dt + σ(t , x∗(t),u∗(t))dBL(t−s−a)+
,

then for every t ∈ [0,T ), almost surely

bu(t , x∗(t),u∗(t))p(t) + κ−1σu(t , x∗(t),u∗(t))q(t)1{Ra(t)=0}

−fu(t , x∗(t),u∗(t)) = 0.
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Thank you!
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